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Incorporation of Static Field Solutions Into the

Finite Difference Time Domain Algorithm
David B. Shorthouse and C. J. Railton, Member, IEEE

Abstract—This paper demonstrates how the accuracy, speed

and flexibility of F-DTD analysis may be improved-for- the
modelling of MMIC structures. Correction factors, obtained
from the known behavior of static fields close to discontinuities,

may be incorporated into the algorithm for application in the
regions of high field variation where errors would otherwise

occur. Application is made to both enclosed and open micro-

strip structures.

I. INTRODUCTION

T HE Finite Difference Time Domain (FDTD) method

is now well-known. It was first formulated by Yee [1]

in the 1960’s, and has been extensively applied to elec-

tromagnetic scattering and coupling problems, e.g. [2],

and more recently to the analysis of planar microwave

components, e.g. [3]. Traditionally these kinds of prob-

lems are done in the frequency domain using analytically

heavy methods stich as the Spectral Domain method [4].

However, with high performance computers becoming in-

creasingly affordable, coupled with the need for anal ysis

of microwave integrated circuits (MMIC’S) having com-

plex geometries and containing nonlinear components be-

coming ever more pressing, time domain techniques, in

particular the FDTD method, are becoming of increasing

importance.

At present, the fabrication technology available to de-

signers of MMIC’s can outstrip the ability of marketed

CAD tools to accurately predict circuit performance. This

is especially true where the circuits have a high compo-

nent density, are used at high frequencies, or contain novel

components which have complex, multilayered struc-

tures. In [5], Railton and McGeehan demonstrated how

the basic FDTD method can be enhanced by, for exam-

ple, the inclusion of modified finite difference equations

to cater for thin dielectric layers and by the use of a non-

uniform lattice arrangement. These enhancements have

the effect of reducing the number of variables required by
the model for a given prediction accuracy. This gives a

marked reduction in computer run time or an improve-

ment in model accuracy for the same number of nodes.

This paper describes how the FDTD technique may be

enhanced further by incorporating knowledge of the
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asymptotic field behavior around microstrip discontinui-

ties into the algorithm. Microstrip discontinuities, namely

comers and edges, are the building blocks of MMIC’s.

The resulting decrease in model running times, achieved

in this contribution, indicates that it will soon be practical

to use the FDTD technique for the CAD and analysis of

realistically complex MMIC structures on an engineer’s

workstation.

II. THE BASIC FDTD TECHNIQUE AND SOURCES OF

ERROR

In the mid- 1960’s, Yee [1] introduced a new means of

solving Maxwell’s time dependent equations using finite-

differences. With this approach, the continuous electro-

magnetic field in a finite volume of space is sampled at

distinct points (or nodes) in a space-lattice, and at distinct

equally spaced points in time. Yee produced difference

equations, for non-dispersive, non-varying, isotropic me-

dia, that are finite difference analogues of the time de-

pendent Maxwell’s equations. The basic FDTD tech-

nique, and the difference equations which are used have

been detailed many times in the literature. For brevity, a

shorthand notation is used in this paper, as shown below

for the EX and HY field component difference equations:

(& Hy- – Hy) + (Hz – HZ-)Et+dl = E; + _
x

& t?y )
(1)

c

(

& (E; – E,) + (EX – E;)Ht+d = H; + _
Y 6X 82 )

(2)
P

where F; indicates that the Fq field component comes

from the preceding cell in the q-direction, and F; indi-

cates that the Fq field component comes from the next cell

on. Fig. 1 shows the local arrangement of field compo-

nents around a unit cell of the space lattice, highlighting
the location of the EX and HY difference equation vari-

ables.

The localized nature of the FDTD algorithm can be

seen, whereby the new value of a field component in the

model depends only on its last value and on the values of

some of the field components surrounding it. Thereby, all
field phenomena can be modelled, as though stepping

through time, by repeatedly implementing the difference

equations on the field components throughout the model

lattice. Hence field propagation and coupling that occur
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Fig. 1. Location of the Exand Hydifference equation variahlesanda Yee
unit cell.

on miniscule time and space scales may easilly be inves-

tigated, e.g. [6].

Care must be taken to ensure that field resolution and

stability considerations are met in deciding the configu-

ration of the model. To ensure accuracy of field resolution

and avoid ringing, any internodal distance, 6, must be a

fraction of the minimum wavelength, Amin, expected in

that region. It is found that reliable working constraints

are ensuring that .6 < Xmin/20 close to discontinuities,

and 6 < Xmin/ 10 elsewhere. In addition, to ensure model

stability, the choice of time step, &, is governed by

(1111-’/2
&<- —

Inax ~~ )2+$+s
(3)

v

as derived by Taflove and Brodwin [7]. Here, v~,, is the

maximum wave phase velocity expected, and the 6x, tiy,

and 6Z are the smallest values for a cell in the model. This

condition penalises the use of small internodal distances

by insisting on a proportionally smaller time step, which

necessitates more iterations for a model when cycling

through a set time span.

To calculate frequency dependent parameters from the

model, Fourier Transforms are performed on the time-do-

main data collected from specified nodes over the course

of a run. Two main FDTD analysis techniques are com-

monly used; the resonator method for closed structures

and the pulse excitation method for open structures.

Firstly, the resonator method, as used by Choi and Hoefer

[8], where the model is surrounded by electric walls,

(simulated by ensuring that the tangential electric and nor-

mal magnetic field components on the walls are main-

tained at z&o), and is given an initial excitation and left

to oscillate. After an initial transient period, the model

settles to its resonant steady-state. A time domain history

is then taken, and a Fourier Transform search provides

the frequencies of the resonant modes. This technique can

also be used in conjunction with SDM [9] to calculate

design parameters of the structure. Secondly, the pulse

excitation method, as used by Reineix and Jecko. [10], and

by Zhang and Mei [1 1]. Here, the model is surrounded
by absorbing boundaries, where applicable. A pulse is put

onto a feed-line and allowed to propagate completely

throughout the structure. The Fourier Transforms of the

incident, transmitted and reflected waves are used to cal-

culate the S-parameters of the structure. Both of these

methods are used to give results in this contribution to
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, demonstrate the generality of the modifications made to

the FDTD method.

It is well-known, as demonstrated by De Smedt and Van

Bladel in [12], that the perpendicular field components

close to a perfectly conducting metallic strip edge, in the

plane of the edge become singular as r ‘0”5. The FDTD

algorithm was formed through pointwise derivative ap-

proximations of Maxwell’s equations, that assumes that

all the field components behave linearly between nodes.

Because the local truncation error of the FDTD approxi-

mation depends on the higher order derivatives of the.

field, it is to be expected that any inaccuracies in the

FDTD analysis will most likely occur in the regions of

high field variation that are found near discontinuities.

An analytically undemanding technique can be used to

reduce inaccuracies by increasing the nodel density of the

model. However, this is doubly costly in computer re-

sources as it would both increase model nodes and hence

variables, ad decrease the iteration time-step necessitat-

ing extra iterations: The original FDTD method has been

enhanced to allow the use of a nonuniform lattice which

enables the rmdel density to be increased close to discon-

tinuities, and decreased elsewhere. While this gives sig-

nificant processing time and accuracy improvements over

using a regular lattice, it still has time step penalties. A

remedy to this problem was sought by introducing a dif-

ferent perspective into the FDTD algorithm.

III. ANOTHER PERSPECTIVE

Taflove et al. [13] derived the basic FDTD difference

equations starting from the integral forms of Ampere’s

law and Faraday’s law. They demonstrated a limited 2-D

modification of the FDTD algorithm close to discontinu-

ities. Their insight is necessary in developing a full FDTD

modification as it transforms our picture of the Yee lattice

into a three dimensional chain-link array of intersecting

orthogonal contours. This equivalent understanding of the

model space helps to shed more light into the effect of
microstrip discontinuities on the FDTD algorithm:

Ampere’s Integral Law:

Faraday’s Integral Law:

a
% !pH”dS=–

$
E“dl (5)

In forming the FDTD difference equations from the ‘inte-

gral laws given above we make two forms of linear spatial

approximation which are detailed below:

Surface Integral Approximation:

!
F“”dS= @“8a”6b (6)

Line Integral Approximation:

[ ~“dl=~”til (7)
d
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where F refers to the value of field, F, that lies in the

centre of each integral region, tkz M is the area of the

surface integral domain, and 61 is the length of the line

integral domain. It is obvious that these integral approx-

imations become less accurate as the higher order spatial

derivatives of the field, F, show greater variation. This is

most likely to happen arotind microstrip discontinuities

where some fields are singular in nature. The HY differ-

ence equation is now derived in brief to indicate where

the above approximations feature in its formulation. Ap-

plying Faraday’s law over the shaded region shown in Fig.

1, we obtain:

With linear approximations in space as in (6) and (7):

;(P”HY“ 8X “ 62)

(8)

= –(2; – E.) “ ax + (Ez – 22+Z) “ bz). (9)

With a linear approximation in time, we once again have

the HY difference equation:

((% (E; – Q + (Ex – E:)Ht+dt = H; . _
Y 6X )62 “

(lo)
P

If we assume that the electromagnetic fields close to mi-

crostrip discontinuities assume their theoretical static

forms, correction factors can be calculated for the integral

approximations of the form of (6) and (7), as described

from Section IV onwards. These correction factors can be

used to form modified FDTD difference equations which

can be applied at the nodes close to the discontinuities.

Their values will depend on the detailed shape of the metal

and the local lattice configuration. The correction factors

are obtained by the direct evaluation of the above integral

approximations using a priori knowledge of static field

strengths and model geometry. The calculation is carried

out prior to running the FDTD algorithm and contributes

very little to the computational efforts required.

Hence, with the inclusion of correction factors CF. and

CF1, approximations (6) and (7) become:

i
F“dS

where CF, = .
F“da”tib

(11)

[
F“dl

where CF1 =
+“61

(12)

IV. CORRECTION FOR APPROXIMATION ERROR IN THE

STRIP PLANE

To illustrate the modification of the FDTD algorithm

with correction factors we shall examine the HY iteration

equation that applies close to a strip edge in its plane, Fig.

2. We can assume, from half-plane theory [2], that close

to the edge the field components assume the following

approximate static forms:

Hy(.x, 2) = ~X-05(~Z + C) (13)

Ex(x) = Dx-” 5 (14)

EZ(Z) = (Ez + F) (15)

where the origin for x lies at the strip edge as shown.

We denote f? as the projection of the strip edge into the

cell of width ax, as illustrated in Fig. 2, and a as the

ratio:

B

a= ii” (16)

By using the assumed field forms in the integral equations

(11) and (12) we produce the following correction factors:

CF, (HY) = CF](~x) = 2~(1 – cx)(O.5 – a) (17)

where O < ci < 0.5. As the transverse electric field com-

ponent, E,, is assumed linear between nodes, no signifi-

cant errors are generated by it through the FDTD approx-

imations. The correction factors can be predetermined

from the geometries of the structure and the configuration

of the lattice.

Hence we can apply the following augmented FDTD

iteration equation for the Hy fields along the edge to re-

move FDTD approximation errors (c. f., (10)):

H;+d’ = H; + ‘t
(

(E; – E,)

p “ CF$ 8X

+ (EX – E; )CF1

)62 “
(18)

It is interesting to note that a specific value of the edge

projection ratio; a = (3 – &)/4 = 0.19, ensures that

the correction factors in this instance all equal one. In

other words it is possible to position the lattice so as to

eliminate these FDTD approximation errors in the strip

plane. It is to be noted that the value of CYchosen will
affect the FDTD frequency results, as it directly changes

the line width/length of the structure as seen by the model

and hence its effective capacitance.

Using a value for a of 0.19 when deciding on the con-
figuration of the model mesh is a sensible choice for the

above reason. However, it is not always possible to po-

sition the lattice in such a manner for more complex struc-

tures without incurring run-time penalties due to small cell

sizes having to be used with a correspondingly small time

step. Fig. 3 highlights the problem for a typical MMIC

configuration. Furthermore, fields immediately above and

below discontinuities also exhibit large spatial variation
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Fig. 2. Hydifference equation variables ata strip edge,

0< 0.19 a> 0.<9 UN=0.19 clx O.19

)(,, 4j-
11”1

NO a RESTRICTION FULL a=O.19 RESTRICTION

Hencs6z larger+6t larger Hence 6zsmaller+t smaller

& less model nodes & more model nodes

Fig. 3. Typical lattice positioning problems.

IHYI

I

(a) Model Problem

Fig. 4. Snapshots taken from themodeling of theopen end discontinuity,
(a) IHY[ inthe strip plane. (b) lHY[below the strip plane.

which will produce approximation errors that are not

eliminated by using this value of CY. Fig. 4 shows a “snap-

shot of singular HY fields arising during the modeling of

an open-end using the resonance method, taken both in
the plane of the strip and below it. To the authors’ knowl-

edge, no analytical solutions for the field distributions here

are available. A knowledge of the behaviour of the fields

in these regions is required to enable the calculation of

correction factors for all the approximation errors gener-

ated from the FDTD algorithm.

V. LAPLACE SOLUTION

De Smedt and Van Bladel [12], [14] formulated a

method for solving the Laplace equation in spherical co-

ordinates to give the electric and magnetic potentials ex-

isting close to the tip of a flat metallic sector of arbitrary

opening angle. The technique was recently utilized by

Marchetti andl Rozzi [15], [16] as a means of enhancing

the Transverse Resonance Diffraction Method. To solve

the static problem we assume the electric potential, @,

and the magnetic potential Y, to be of the forni

*(R, 0, @) = Z?UY(O, @)

V(R, e, @) = Z?’z(e, ~)

The function Y is an eigenfunction of the problem:

V2Y+ V(v+ l)Y=O

Y = O on sector.

The functional J, which is stationary with respect

genfunction Y, is given in [14] by

(19)

(20)

(21)

to ei-

(22)

The eigensolution Y(6, 4, 9m, Vlow) of (21), for a partic-

ular sector of opening angle 20m, corresponding to the

lowest eigenvalue VIOWcan be calculated using the finite

element method, and stored in a database file. Fig. 5

shows the type of sectors- most commonly seen in

MMIC’S, indicating that database solutions for 6m =
T/2, m/4 and 3T /4 are those usually required.

We use standard finite-element procedure [17] to solve

the eigen-problem, so only an overview is given for the

method—The problem space, Y(O s 6 < m, O s @ s

r/2), is dividled up into triangular elements and approx-

imated using standard local trial functions, A(i), as shown

in Fig. 6. Typically 3500 elements are used ‘for each so-

lution. In minimizing the functional given in (22), the el-

emental stiffness and mass elemental matrices are calcu-

lated, which me then combined into the global stiffness

[~ti] and mass [Zt4ti] matrices using standard finite-ele-

ment techniques. These are banded, symmetrical matrices

and so can be compressed to allow for a finer solution.

This results in the following matrix eigenvalue problem:

([Kj] -- V(v + 1) [Mti]) “ $ = o

Y = ~ ~i “ A(i). (23)

The lowest eigenvalue, VIOW,and its corresponding eigen-

vector, &lOW, of problem (23) is found from a standard

NAG] library procedure using a varient of the method of

‘Numerical Algorithm Group, Oxford.
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Fig. 5. Commonly seen sectors in MMIC Circuitry

Fig. 6. Finite element solution space for Y.

Crawford [18]. The components of &OWgive the discre-

tized solution for Y, to be stored in the database file. Hence

we can obtain the static form of the electric field, in

rectangular coordinates, close to the metallic sector, from

the grad of the electric potential, @, through interpolation

of these database files:

E= ()
EX

EY

E,

.++j:n;)

()
Cost ?’cosrj

aY

‘z cos e . sin 4

– sin 0

.

H
– sin 4

1 ay
+—

sine”%
Cos 4 . (24)

o

The zero-order magnetic potential, W(R, 0, ~, tl~), is eas-

ily obtained from the solution for the electric potential,

@, with opening angle 2.(7r – thn). It is used to produce

the expected magnetic field close to a sector, from the

grad of Y. A database of electric potential solutions for

commonly seen sectors in MMIC circuitry can be quickly

established. Hence the theoretical electric and magnetic
fields that exist around dlscontinuities can be produced

and transformed into rectangular coordinates. Thereby,

integrals of the form of (11) and (12) can be calculated

through a discretization of the integral domain, which en-

ables the calculation of correction factors for electromag-

netic fields outside of the strip plane.

The application to a microstrip edge deserves special

mention. The edge can be considered ‘a sector of opening

angle em = T/2. We expect no transverse dependence of

the static fields along the edge therefore all points in the

integral region are assumed to be 0 = O or T, However,

to overcome the 1 /sin 0 singularity that exists in equation

(24), it is necessary to use a value of 19= m – 6, (where

6 is small) in the calculation of the expected fields. A bo-

nus of the non-transverse dependence along an edge is

that the correction factors for a node near an edge are all

‘identical with those of other nodes further along the edge.

In other words it is only necessary to calculate the correc-

tion factors for an edge once.

VI. CORRECTION FACTOR IMPLEMENTATION

To illustrate the use of correction factors in the FDTD

method, we shall inspect the difference equation for EX

that applies close to a microstrip edge. This is an impor-

tant source of FDTD approximation error. A summarized

derivation of the Ex difference equation modified to in-

clude correction factors, (CF), is given starting from Am-,

pere’s law assuming a loss-less environment:

a

% !
cE”dS=

f
H“dl (25)

With linear approximations in space as in (6) and (7) and

time, Yee’s Ex difference equation follows:

E:+ dt

(

= E, + y @Y- – ~Y) + (Hz – H,-)

x
& &y )

. (26)
e

If we correct for the spatial approximations as in (11) and

(12), using-the static forms of electric and magnetic fields

obtained from the Laplace solution, we form the modified

difference equation:

& ((HY- “ CF1l – Hy s CF12)
Et+d . E; +_ _

.x
CF. “ E &

~ (HZ “ CF1~ – H,- ● CF14)

6y )
(27)

Fig. 7 highlights the EX difference equation variables that

apply close to a microstrip edge. It also shows the ex-

pected EX field in the region and the expected FDTD ap-

proximation error arising from (6) and (7) which neces-

sitates correction. It is interesting to note that correction

factor CF’S in (27) has the effect of altering the effective

permittivity and hence accounts for the local fringing ca-

pacitance.

This procedure can be extended to allow the formula-

tion of modified difference equations for all the electro-
magnetic fields around discontinuities. ” The correction

factors for a node will depend on its position relative to a

discontinuity, and on “the lattice dimensions around it.

When compared with standard FDTD implementation,

extra processing time is required, before iteration begins,

to calculate all the correction factors for the lmodel through
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Fig. 7. Extield component close toastripeclge.

evaluation of integrals arising from (11) and (12), The

integrals are calculated through a discrete summation of

the field values over the integral regions, which are ob-

tained through linear interpolation of the database poten-

tial files. Accuracy is high due to the (R, 6, +) dependence

of the potential files, as any field singularity information

is contained in the R’ term. The pre-processing time is

minimal as the majority of the static field calculation is

already dcme’in the formation of the database files. A little

extra time is also invested on each iteration in applying

the modified difference equations at the chosen nodes close

to any discontinuities.

In order to reduce storage and processing requirements

for the correction factors, only those fields and nodes that

are significantly affected by the discontinuity are cor-

rected. As might be expected, it is found that greatest im-

provement in accuracy comes from correcting the field

components containing’ the most energy, and from cor-

recting the nodes closest to the discontinuity where most

field variation is displayed. Overall extra processing time

is found to be of the order of 1%.

VII. RESULTS FOR CLOSED STRUCTIJRES

In [19], Shorthouse and Railton produced results for the

microstrip line and open-end discontinuity, analyzed us-

ing the basic resonance ,method FDTD, the FDTD with

correction factors and finally, the SDM method. The ben-

eficial effects of using correction factors both in speed and

accuracy were demonstrated. Correction factors were used

in the modeling of the open-end discontinuity to demon-

strate the benefits of correction factor implementation over

a wide variation in u. All the open-end models in this

paper use a substrate having E, = 9.7 and of height 1.27

mm. Strip widths are all 1.27 mm. Fig. 8 displays the

fundamental resonances obtained during the modelling of

open-ends of lengths 5 mm and 8 mm. The model config-

urations are given in Tables I and II, respectively. Results

are obtained using FDTD models having coarse meshes;

with and without correction factors, and with jbrce ma-

jeure, fine mesh models that take longer to run and are

taken to be accurate based on previous experience. A nor-

malized run-time figure (NRT) is used to compare run-

tirnes between different FDTD models which takes into

account model nodes and model time step:

NRT m ‘odes
Time Step”

(28)

991

~,35Fundamental Resonant Frequency (GHz)

![s

CoarmGrid mamaGrlavim CF Fine Grla

0.1 0.15 0.2
0’25alpha(a)0.3

(a)

Fundamental Resonant Frequency (GHz)

:1-*

CO.,,. Grid Cm,,, Qrld wl,h CF

(b)

Fig. 8. Open-end discontinuity results. (a) Length = 5 mm. (b) Length =

8 mm.

The FDTD runs utilizing correction factors use the mod-

ified difference equations have correction only for se-

lected field components close to discontinuities that are

situated in the plane of the strips and immediately below

them. The improvement .in accuracy from this form of

FDTD algorithm modification is clearly demonstrated,

whereby accurate results can be obtained using coarser

grids than normal. In these examples, where irregular lat-

tices were used throughout, a reduction in run time of the

order of 8 times is displayed when compared with an op-

timal irregular lattice. The order of time saving would be

even greater if compared to the widely used regular lat-

tices.

To demonstrate how the calculated resonant frequency

may be made constant, over a wide variation in a, through

the use of correction factors, the 5 mm open-end was again

modeled this time only using correction in the strip plane.

Fig. 9 displajw the fundamental resonance obtained. The

rise in. calculated resonant frequency with a in the uncor-

rected runs is due to the fact that the effective width of

the line as seen by the model becomes less. The relatively

level curve for the calculated frequency ‘response of the

corrected runs indicates that the a dependence of model

prediction may be removed by correction factors which

enables a more flexible approach to the positioning of the

model lattice. This gives benefits both in number of model

nodes and in the model time step, as indicated by Fig. 3.

VIII. RESULTS FOR OPEN STRUCTURES

In order to demonstrate the use of correction factors on

open structures using pulse excitation analysis, the low

pass filter that was analyzed by Sheen et ‘al. [20] using

FDTD analysis and a regular lattice, was again analyzed

by the FDTD method. The model geometry is given in

Fig, 10. We aim to show how the speed of Sheen’s anal-

ysis can be substantially improved through the use of ,an

irregular lattice, and then further improved through the

use of correction factors. Apart from the ground plane,

the walls of the model had a form of Mur’s [21] first order

absorbing boundaries imposed on them, which have been

adapted to allow for a nonuniform lattice [22]. A
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TABLE I

MODEL CONFIGURATIONS USED IN THE SIMULATION OF THE MICROSTRIP OPEN-END DISCONTINUITY,
LENGTH = 5 mm

FDTD Model Type: Coarse Grid Coarse Grid with CF Fine Grid

(Open-End Length = 5 mm) ..—. .—-. —

Nodes 20X12X20 20X12X20 40x24x20
Time Step (pS) 0.528 0.528 0.264

NRT3 1.00 1.01 26.67

(1.00 = 58.3 CPU rein)

3Run times given for a Gould NP 1 mini-computer

TABLE II
MODEL CONFIGURATIONS USED IN THE SIMULATION OF THE MICROSTRIP OPEN-END DISCONTINUITY,

LENGTH = 8 mm

FDTD Model Type: Coarse Grid Coarse Grid with CF Highly Irregular Fine Grid

(Open-End Length = 8 mm) --—--—- -— ----------- ---

Nodes 20X12X20 20X12X20 24x20x24
Ti;;,Step (pS) 0.729 0.729 0.364

1.00 1.01 8.01
(1.00 = 53.6 CPU rein)

3Run times given for a Gould NP 1 mini-computer

Fundamental Resonant Frequency (GHz)

:-

Fig. 9. Open-end discontinuity modeling with varying cr.

Fig. 10. Low-pass filter geometry showing lattice regions for model B

Gaussian pulse was used as the excitation because it is

smooth and has a Fourier Transform that is also Gaussian.

As in the Sheen FDTD model, the time constant of the

pulse was 15 pS with an overall duration of 90 pS. To

ensure a pulse launch undistorted by the model boundary,

the vertical components of the E fields were excited under

the feed-line two nodes inside the absorbing bounda~.

This set up two pusles traveling in opposite directions.

The receding one was absorbed by the absorbing bound-

ary. A time history was taken at a node just below the

feedline whose position was chosen so as to allow for sep-

aration of the input and reflected waves. A time history

was also taken just under the output line. The vertical E
field components in the time histories can be assumed pro-

portional to the voltage on the lines, as long as the line

widths are the same, and can be directly fourier trans-

formed to produce frequency dependent S-parameters.

Table III displays the configurations of FDTD models

used. We use Sheen’s measured results obtained from a

HP-85 10 network analyser, and a Touchstone@ simulation

for further comparison. Fig. 11 displays the wide-band

S-parameter results for the measured case, the Touchstone

simulation and the best irregular lattice FDTD simulation

model found, (B). The model (B) was the best found in

terms of overall speed and accuracy, and is similar to the

one used in [23]. The results are generally in agreement

in showing the characteristic troughs, but diverge from

the measured for the higher frequencies. An FDTD model

will become less accurate as the frequency rises because

the mesh size becomes a larger fraction of wavelength,

and the higher frequency components in the initial Gauss-

ian pulse are relatively less. Touchstone results are based

on combinations of empirical formulas and quasi-static

models which will be expected to reduce in accuracy with

increasing frequency. It must also be noted that the HP-

8510 network analyzer was only calibrated to 18 GHz,

furthermore, measured results in these regions become in-

creasingly sensitive to connector imperfections, substrate

permittivity tolerances and metal etching tolerances.

However, with these points in mind, it is reasonable to

compare results for all methods and models by looking

more closely at the S-parameter troughs.

Fig. 12 displays S21 results over 5.5 to 9 GHz for our

FDTD models (B, C, D), Sheen’s FDTD model (A),

Sheen’s measured data and the Touchstone simulation.

The Touchstone simulation is quite poor here, only pick-

ing out a central trough. Sheen’s regular lattice model (A),

‘A registered trademark of EEsof, Inc.
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TABLE 111

MODEL CONFIGURATIONS USEDIN THE SIMULATION OF THE Low PASS FILTER

NRT3
FDTD Model Type: Time Step (1.00 = 48.5 CPU

(Low Pass Filter) Nodes (ps) rein)

A Sheen [20] Regular Lattice 128000 0.6964 8.01

B Best Irregular Lattice 25344 0.508 2.18

c Coarse Irregular Lattiw 12096 , 0.527 1.00
D Coarse Irregular Lattice with CF 12096 0.527 1.01

3Run times given fora Gould NP1 mini-computer.

‘Using the same stability criterion as for models B, C and D.
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Fig. 12. Narrowband comparison of low-pass filterS21 results.

although taking about 3.7 times longer to run than the best

irregular lattice model (B), is the further removed from

the measured data. This is due to having a larger cell size

around the discontinuities, and hence, the worse model
definition. FDTD model C uses less nodes in a coarser

lattice than model B, which allows a larger time step,

(0.527 pS as opposed to 0.508 pS), and a run-time of less

than half that of model B. The main trough is about 400

MHz down on the measured and model B. FDTD model

D uses the same lattice as model C but uses correction

-40 I I I I
4.4 4.6 4.S 5 5.2 5,4 14 14.5 15 15.5 16 16.5

Frequency (GHz) Frequency (GHz)
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Fig. 13. Narrowband comparison of low-pass filter S 11 results.

factors in the strip plane and just below it. The trough has

been substantially shifted upwards by the use of correc-

tion factors and is now nearer to the measured than

Sheen’s model (A) which took approximately eight times

longer to run.

Fig. 13 displaysS11 results for the first and last troughs;

over 4.4 to 5.5 GHz and over 14 to 16.5 GHz, respec-

tively. The same conclusions as for the S21 results gen-

erally apply. The frequency shifts on the coarser models

through the use of correction factors may be seen on both

graphs, indicating that correction factor performance is

frequency robust. For reasons explained above, it is im-

portant not to give too much credence to the higher fre-

quency range results due to the uncertainty over the meas-

ured data.

IX. CONCLUSION

The incorporation of correction factors into the FDTD

algorithm applied to the field components close to mi-
crostrip discontinuities has been shown to give a marked
improvement in model accuracy for both resonator and

pulse analysis. This equates to considerable savings in

computer processing time, because required accuracy can

be achieved using a coarser lattice which means less nodes

and a larger time step in the model. Correction factors

have also been shown to produce a level frequency re-

sponse over a wide range of CYvariation. This enables

much greater freedom in the placement of the model lat-

tice which again allows fewer nodes and a larger model

time step. With the use of irregular lattices, the order ‘of

time saving indicates that FDTD analysis of complex
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MMIC circuitry is now feasible on moderate power com-

puters.

The technique should be especially effective wherever

brute force lattices have to be used to give adequate def-

inition to finely detailed structures, thin lines or gaps. In

MMIC’S, curved structures are in fact composed of short

line segments, (e.g. a circle being typically 32 sided). The

new technique allows for correction of comers of arbi-

trary angle so that the effects of curves and beveled cor-

ners can be predicted without staircasing approximation

errors.
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