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The Incorporation of Static Field Solutions Into the
Finite Difference Time Domain Algorithm

David B. Shorthouse and C. J. Railton, Member, IEEE

Abstract—This paper demonstrates how the accuracy, speed
and flexibility of FDTD analysis may be improved for the
modelling of MMIC structures. Correction factors, obtained
from the known behavior of static fields close to discontinuities,
may be incorporated into the algorithm for application in the
regions of high field variation where errors would otherwise
occur. Application is made to both enclosed and open micro-
strip structures.

I. INTRODUCTION

HE Finite Difference Time Domain (FDTD) method

is now well-known. It was first formulated by Yee [1]
in the 1960’s, and has been extensively applied to elec-
tromagnetic scattering and coupling problems, e.g. [2],
and more recently to the analysis of planar microwave
components, e.g. [3]. Traditionally these kinds of prob-
lems are done in the frequency domain using analytically
heavy methods such as the Spectral Domain method [4].
However, with high performance computers becoming in-
creasingly affordable, coupled with the need for analysis
of microwave integrated circuits (MMIC’s) having com-
plex geometries and containing nonlinear components be-
coming ever more pressing, time domain techniques, in
particular the FDTD method, are becoming of increasing
importance.

At present, the fabrication technology available to de-
signers of MMIC’s can outstrip the ability of marketed
CAD tools to accurately predict circuit performance. This
is especially true where the circuits have a high compo-
nent density, are used at high frequencies, or contain novel
components which have complex, multilayered struc-
tures. In [5], Railton and McGeehan demonstrated how
the basic FDTD method can be enhanced by, for exam-
ple, the inclusion of modified finite difference equations
to cater for thin dielectric layers and by the use of a non-
uniform lattice arrangement. These enhancements have
the effect of reducing the number of variables required by
the model for a given prediction accuracy. This gives a
marked reduction in computer run time or an improve-
ment in model accuracy for the same number of nodes.
This paper describes how the FDTD technique may be
enhanced further by incorporating knowledge of the
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asymptotic field behavior around microstrip discontinui-
ties into the algorithm. Microstrip discontinuities, namely
corners and edges, are the building blocks of MMIC’s.
The resulting decrease in model running times, achieved
in this contribution, indicates that it will soon be practical
to use the FDTD technique for the CAD and analysis of
realistically complex MMIC structures on an engineer’s
workstation. ‘

II. Tue Basic FDTD TECHNIQUE AND SOURCES OF
Error

In the mid-1960’s, Yee [1] introduced a new means of
solving Maxwell’s time dependent equations using finite-
differences. With this approach, the continuous electro-
magnetic field in a finite volume of space is sampled at
distinct points (or nodes) in a space-lattice, and at distinct
equally spaced points in time. Yee produced difference
equations, for non-dispersive, non-varying, isotropic me-
dia, that are finite difference analogues of the time de-
pendent Maxwell’s equations. The basic FDTD tech-
nique, and the difference equations which are used have
been detailed many times in the literature. For brevity, a
shorthand notation is used in this paper, as shown below
for the E, and H, field component difference equations:

H; — H) _H-
Ei+dt=E)tc+§£< Y 62 y +(Hz 6sz)> (1)

&t ((Ef — E, — E}
H;+dt — H; + = <( z p EL) + (Ex - Ex )> (2)
n X Z

where F; indicates that the F, field component comes
from the preceding cell in the g-direction, and F, indi-
cates that the F, ficld component comes from the next cell
on. Fig. 1 shows the local arrangement of field compo-
nents around a unit cell of the space lattice, highlighting
the location of the E, and H, difference equation vari-
ables.

The localized nature of the FDTD algorithm can be
seen, whereby the new value of a field component in the
model depends only on its last value and on the values of
some of the field components surrounding it. Thereby, all
field phenomena can be modelled, as though stepping
through time, by repeatedly implementing the difference
equations on the field components throughout the model
lattice. Hence field propagation and coupling that occur
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F1g 1. Location of the Ex and Hy difference equation varlables and a Yee
unit cell.

on miniscule time and space scales may easily be inves-
tigated, e.g. [6]. '

Care must be taken to ensure that field resolution and
stability considerations are met in deciding the configu-
ration of the model. To ensure accuracy of field resolution
and avoid ringing, any internodal distance, 8, must be a
fraction of the minimum wavelength Amin, €Xpected in
that region. It is found that reliable working constraints
are ensuring that 8 < \;,/20 close to discontinuitiés,
and § < A,/ 10 elsewhere. In addition, to ensure model
stability, the choice of time step, &t, is governed by

w=s (L e YT
‘ —'—"’max dx* 6})2’ 6.Z2 E -

as derived by Taflove and Brodwin [7]. Here, »,,, is the
maximum wave phase velocity expected, and the éx, dy,
and 0z are the smallest values for a cell in the model. This
condition penalises the use of small internodal distances
by insisting on a proportionally smaller time step, which
necessitates more iterations for a model when cycling
through a set time span.

To calculate frequency dependent parameters from the
model, Fourier Transforms are performed on the time-do-
main data collected from specified nodes over the course
of a run. Two main FDTD analysis techniques are com-
monly used; the resonator method for closed structures
and the pulse excitation method for open structures.
Firstly, the resonator method, as used by Choi and Hoefer
[8], where the model is surrounded by electric walls,
(simulated by ensuring that the tangential electric and nor-
mal magnetic field components on the walls are main-

tained at zero), and is given an initial excitation and left

to oscillate. After an initial transient period, the model
settles to its resonant steady-state. A time domain history
-is then taken, and a Fourier Transform search provides
the frequencies of the resonant modes. This technique can
also be used in conjunction with SDM [9] to calculate
design parameters of the structure. Secondly, the pulse
excitation method, as used by Reineix and Jecko [10], and
by Zhang and Mei [11]. Here, the model is surrounded
by absorbing boundaries, where applicable. A pulse is put
onto a feed-line and allowed to propagate completely
throughout the structure. The Fourier Transforms of the
incident, transmitted and reflected waves are used to cal-
culate the S-parameters of the structure. Both of these
methods are used to give results in this contribution to

,demonstrate the generality of the modifications made to

the FDTD method. » ,
It is well-known, as demonstrated by De Smedt and Van
Bladel in [12], that the perpendicular field components
close to a perfectly conducting metallic strip edge, in the
plane of the edge become singular as » *°. The FDTD
algorithm was formed through pointwise derivative ap-
proximations of Maxwell’s equations, that assumes that
all the field components behave linearly between nodes.

‘Because the local truncation error of the FDTD approxi-

mation depends on the higher order derivatives of the-
field, it is to be expected that any inaccuracies in the
FDTD analysis will most likely occur in the regions of
high field variation that are found near discontinuities.

An analytically undemanding technique can be used to
reduce inaccuracies by increasing the nodel density of the
model. However, this is doubly costly in computer re-
sources as it would both increase model nodes and hence
variables, and decrease the iteration time step necessitat-
ing extra iterations. The original FDTD method has been
enhanced to allow the use of a nonuniform lattice which
enables the nodel density to be increased close to discon-
tinuities, and decreased elsewhere. While this gives sig-
nificant processing time and accuracy improvements over
using a regular lattice, it still has time step penalties. A
remedy to this problem was sought by introducing a dif-
ferent perspective into the FDTD algorithm.

III. ANOTHER PERSPECTIVE

Taflove et al. [13] derived the basic FDTD difference
equations starting from the integral forms of Ampere’s
law and Faraday’s law. They demonstrated a limited 2-D
modification of the FDTD algorithm close to discontinu-
ities. Their 1n51ght is necessary in developing a full FDTD
modification as it transforms our picture of the Yee lattice
into a three dimensional chain-link array of intersecting
orthogonal contours. This equivalent understanding of the
model space helps to shed more light into the effect of
microstrip discontinuities on the FDTD algorithm:

Ampere’s Integral Law:

g;ga.E-ds'=<§5H-dl—ScE'-ds )

Faraday’s Integral Law: .
a
ESI"H'dS=_§>E'dl (5

In forming the FDTD difference equations from the inte-
gral laws given above we make two forms of linear spatial
approximation which are detailed below:

Surface Integral Approximation:

SF'-dsz?-aa-ab 6)
Line Integral Approximation:

SF-dlzl%-al (D
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where F refers to the value of field, [F, that lies in the
centre of each integral region, da 6b is the area of the
surface integral domain, and 6/ is the length of the line
integral domain. It is obvious that these integral approx-
imations become less accurate as the higher order spatial
derivatives of the field, F, show greater variation. This is
most likely to happen around microstrip discontinuities
where some fields are singular in nature. The H, differ-
ence equation is now derived in brief to indicate where
the above approximations feature in its formulation. Ap-
plying Faraday’s law over the shaded region shown in Fig.
1, we obtain:

%Suyy-ds=—<§>z«:-dz. @®)

With linear approximations in space as in (6) and (7):
ad R
&(u-Hy-ax- 02)

= —(Ef —E)-6x+(E,—E'2)-8). (9

With a linear approximation in time, we once again have
the H, difference equation:

+ ot
,6_t<(Ez ), & Ex>>, 10)

Ht+a’t — Ht
Y Y on o6x 6z

If we assume that the electromagnetic fields close to mi-
crostrip discontinuities assume their theoretical static
forms, correction factors can be calculated for the integral
approximations of the form of (6) and (7), as described
from Section IV onwards. These correction factors can be
used to form modified FDTD difference equations which
can be applied at the nodes close to the discontinuities.
Their values will depend on the detailed shape of the metal
and the local lattice configuration. The correction factors
are obtained by the direct evaluation of the above integral
approximations using a priori knowledge of static field
strengths and model geometry. The calculation is carried
out prior to running the FDTD algorithm and contributes
very little to the computational efforts required.

Hence, with the inclusion of correction factors CF, and
CF,, approximations (6) and (7) become:

SF'dS=%'6a-6b'CFS

SF~dS
where CF; = =——— 11
F-oa- b
SF-dl
SF-dl=%-az-CF1 where CF, = ———
E - ol
(12)

IV. CORRECTION FOR APPROXIMATION ERROR IN THE
STRIP PLANE

To illustrate the modification of the FDTD algorithm
with correction factors we shall examine the H, iteration
equation that applies close to a strip edge in its plane, Fig.
2. We can assume, from half-plane theory [2], that close
to the edge the field components assume the following
approximate static forms:

Hy(x,2) = Ax Bz + C) (13)
E,(x) = Dx 93 (14)
E(2) = (Ez + F) (15)

where the origin for x lies at the strip edge as shown.

We denote 3 as the projection of the strip edge into the
cell of width 6x, as illustrated in Fig. 2, and « as the
ratio:

_8
a = (16)

By using the assumed field forms in the integral equations
(11) and (12) we produce the following correction factors:

CF,(H,) = CFy(E,) = 21 — 0)(0.5 — o) (17)

where 0 < a < 0.5. As the transverse electric field com-
ponent, E,, is assumed linear between nodes, no signifi-
cant errors are generated by it through the FDTD approx-
imations. The correction factors can be predetermined
from the geometries of the structure and the configuration
of the lattice.

Hence we can apply the following augmented FDTD
iteration equation for the H, fields along the edge to re-
move FDTD approximation errors (c.f., (10)):

ot (E] — E)
Ht+dt = H + z pd
7 7 u - CF, ox
E. — EJ)CF

It is interesting to note that a specific value of the edge
projection ratio; o« = (3 — NG )/4 = 0.19, ensures that
the correction factors in this instance all equal one. In
other words it is possible to position the lattice so as to
eliminate these FDTD approximation errors in the strip
plane. It is to be noted that the value of o chosen will
affect the FDTD frequency results, as it directly changes
the line width/length of the structure as seen by the model
and hence its effective capacitance.

Using a value for « of 0.19 when deciding on the con-
figuration of the model mesh is a sensible choice for the
above reason. However, it is not always possible to po-
sition the lattice in such a manner for more complex struc-
tures without incurring run-time penalties due to small cell
sizes having to be used with a correspondingly small time
step. Fig. 3 highlights the problem for a typical MMIC
configuration. Furthermore, fields immediately above and
below discontinuities also exhibit large spatial variation
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Fig. 2. Hy difference equation variables at a strip edge.

n a<019 a>0.19

a=019 a=0.19"

e\
&z
T

\
8z
l

NO a RESTRICTION FULL a=0.19 RESTRICTION
Hence: 6z larger—>ét larger  Hence: &z smaller—>&t smaller
& less model nodes & more model nodes

Fig. 3. Typinal lattice positioning problems.

Model Problem

(b

Fig. 4, Snapshots taken from the modeling of the open end discontinuity.
(3) | H,| in the strip plane. (b) | H, | below the strip plane.

which will produce approximation errors that are not
eliminated by using this value of «. Fig. 4 shows a snap-
shot of singular Hy fields arising during the modeling of
an open-end using the resonance method, taken both in
the plane of the strip and below it. To the authors” knowl-

edge, no analytical solutions for the field distributions here -
are available. A knowledge of the behaviour of the fields
in these regions is required to enable the calculation of

correction factors for all the approximation errors gener-
ated from the FDTD algorithm.

V. LAPLACE SOLUTION

De Smedt and Van Bladel [12], [14] formulated a
method for solving the Laplace equation in spherical co-
ordinates to give the electric and magnetic potentials ex-
1st1ng close to the tip of a flat metallic sector of arbitrary
opening angle. The technique was recently utilized by
Marchetti and Rozzi [15], [16] as a means of enhancmg
the Transverse Resonance Diffraction Method. To solve
the  static problem we assume the electric potential, ®,
and the magnetic potential ¥, to be of the form

&R, 0, $) = R'Y(0, ¢) (19)
¥(R, 6, ) = RZ(©, ) (20)
The function Y is an .eigenfunction of the problem:
| VY + v + DY =0
| Y = 0 on sector. 21

The functional J, which is stationary with respect to ei-
genfunctlon Y, is given in [14] by

J(Y) S [lgradsle — ¥y + 1)Y2} ds

H K%)z + sml2 5 <%>2] sin 0 - do

- df — vy + 1) H Y2sin@ - dp - do.  (22)

The eigensolution Y(6, ¢, 0m, »y,) of (21), for a partic-
ular sector of opening angle 26m, corresponding to the
lowest eigenvalue »y,, can be calculated using the finite
element method, and stored in a database file. Fig. 5
shows the type of sectors: most commonly seen in
MMIC’s, indicating that database solutions for §m =
7 /2, /4 and 37 /4 are those usually required:

We use standard finite-element procedure [17] to solve
the eigen-problem, so only an overview is given for the
method—The problem space, ¥(0 < § < 7,0 < ¢ <
7 /2), is divided up into triangular elements and approx-
imated using standard local trial functions, A?), as shown
in Fig. 6. Typically 3500 elements are used for each so-
lution. In minimising the functional given in (22), the el-
emental stiffness and mass elemental matrices are calcu-
lated, which are then combined into the global stiffness
[K;] and mass [M;] matrices using standard finite-ele-
ment techniques. These are banded, symmetrical matrices
and so can be compressed to allow for a finer solution.
This results in the following matrix eigenvalue problem:

(K] — v + DIMD - § =0
Y=21¢- A9

23)

The lowest eigenvalue, »,,, and its corresponding eigen-
vector, £,w, Of problem (23) is found from a standard
NAG! library procedure using a varient of the method of

'Numerical Algorithm Group, Oxford.
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-} om = 90°
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Fig. 5. Commonly seen sectors in MMIC Circuitry.
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Fig. 6. Finite element solution space for Y.

Crawford [18]. The components. of £, give the discre-
tized solution for ¥, to be stored in the database file. Hence
we can obtain the static form of the electric field, in
rectangular coordinates, close to the metallic sector, from
the grad of the electric potentlal ®, through 1nterpolat1on
of these database files:

E, o
E= E, | = —(grad q’)(x,y,z)
E,
sin 6 - cos ¢
-1
= vY{ sinf - sin¢
—cos 0
cos 0 - cos ¢
ay ‘\
+ % cos # - sin-¢
. —sin 0
. [/ —sin ¢
1 oY
——sin 7 . % : cos ¢ (24)
' 0

The zero-order magnetic potential, ¥(R, 8, ¢, 6,,), is eas-
ily obtained from the solution for the electric potential,
®, with opening angle 2(w — 0m). It is used to produce
the expected magnetic field close to a sector, from the
grad of ¥. A database of electric potential solutions for
commonly seen sectors in MMIC circuitry can be quickly
established. Hence the theoretical electric and magnetic
fields that exist around discontinuities can be produced
and transformed into rectangular coordinates. Thereby,
integrals of the form of (11) and (12) can be calculated
- through a discretization of the integral domain, which en-
ables the calculation of ¢orrection factors for electromag-
netic fields outside of the strip plane.

~ The application to a microstrip edge deserves special
mention. The edge can be considered a sector of opening
angle 6m = /2. We expect no transverse dependence of
the static fields along the edge therefore all points in the
integral region are assumed to be § = 0 or . However,
to overcome the 1/sin 6 singularity that exists in equation
(24), it is necessary to use a value of 6 = = — §, (where -
6 is small) in the calculation of the expected fields. A bo-
nus of the non-transverse dependence along an edge is
that the correction factors for a node near an edge are all

“identical with those of other nodes further along the edge.
.In other words it is only necessary to calculate the correc- -

tion factors for an edge once.

VI. CORRECTION FACTOR IMPLEMENTATION

~ To illustrate the use of correction factors in the FDTD
method; we shall inspect the difference equation for E,
that applies close to a microstrip edge. This is an impor-
tant source of FDTD approximation error. A summarized
derivation of the E, difference equation modified to in-
clude correction factors, (CF), is given starting from Am-.
pere’s law assuming a loss-less environment: ‘
o= g
—\eE-dS= QO H-d
or
With linear approximations in space as in (6) and (7) and
time, Yee’s E, difference equation follows:

(Hy, — H)) — H)) o
E;+d'=E;+%< yaz | @ P Z)>. (26)

If we correct for the spatial approx1mat10ns as in (11) and
(12), using the static forms of electric and magnetic fields
obtained from the Laplace solution, we form the modified
difference equation:

@25)

8t (Hy - CFy, — H, * CFp)
CF, - ¢ : 0z

' CF14)>

Ef" = E' +

+ (Hz ) CFIS - H
oy

@7

Fig. 7 highlights the E, difference equation variables that

_apply close to a microstrip edge. It also shows the ex-

pected E, field in the region and the expected FDTD ap-
proximation error arising from (6) and (7) which neces-
sitates correction. It is interesting to note that correction
factor CF’s in (27) has the effect of altering the effective
permittivity and hence accounts for the local fringing ca-
pacitance.. .

This procedure can be extended to allow the formula- ‘
tion of modified difference equations for all the electro-
magnetic fields around discontinuities.” The correction

" factors for a node will depend on its position relative to a

discontinuity, and on the lattice dimensions around it.
When compared with standard FDTD implementation,

" extra processing time is required, before iteration begins,

to calculate all the correction factors for the model through
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- FDTD Approximation
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N

Fig. 7. Ex field component close to a strip edge.

evaluation of integrals arising from (11) and (12). The
integrals ‘are calculated through a discrete summation of
the field values over the integral regions, which are ob-
tained through linear interpolation of the database poten-
tial files. Accuracy is high due to the (R, 0, ¢) dependence
of the potential files, as any field singularity information
is contained in the R” term. The pre-processing time is
minimal as the majority of the static field calculation is
already done in the formation of the database files. A little
extra time is also invested on each iteration in applying
the modified difference equations at the chosen nodes close
to any discontinuities. ' ‘

In order to reduce storage and processing requirements
for the correction factors, only those fields and nodes that
are significantly affected by the discontinuity are cor-
rected. As might be expected, it is found that greatest im-
provement in accuracy comes from correcting the field
components containing the most energy, and from cor-
recting the nodes closest to the discontinuity where most

field variation is displayed. Overall extra processing time °

is found to be of the order of 1%.

VII. RESULTS FOR CLOSED STRUCTURES

In [19], Shorthouse and Railton produced results for the
microstrip line and opén-end discontinuity, analyzed us-
ing the basic resonance method FDTD, the FDTD with
correction factors and finally, the SDM method. The ben-
eficial effects of using correction factors both in speed and
accuracy were demonstrated. Correction factors were used
in the modeling of the open-end discontinuity to demon-
strate the benefits of correction factor implementation over
a wide variation in «. All the open-end models in this

paper use a substrate having ¢, = 9.7 and of height 1.27

mm. Strip widths are all 1.27 mm. Fig. 8 displays the
fundamental resonances obtained during the modelling of
open-ends of lengths 5 mm and 8 mm. The model config-
urations are given in Tables I and II, respectively. Results
are obtained using FDTD models having coarse meshes;
with and without: correction factors, and with force ma-

jeure, fine mesh models that take longer to run and are .

taken to be accurate based on previous experience. A nor-
malized run-time figure (NRT) is used to compare run-
times between different FDTD models which takes into
account model nodes and model time step: V

Nodes.

NRT o« ——.
Time Step

(23)

L T I
<01 0.15 0.2 . 0.25a|pha (0)0'3

‘ )
Fig. 8. Open-end discontinuity results. (a) Length = 5 mm. (b) Length =
8 mm. o

The FDTD runs utilizing correction factors use the mod-
ified difference equations have correction only for se- .
lected. field components close to discontinuities that are
situated in the plane of the strips and immediately below
them. The improvement in accuracy from this form of .
FDTD algorithm modification is clearly demonstrated,
whereby accurate results can be obtained using coarser
grids than normal. In these examples, where irregular lat-
tices were used throughout, a reduction in run time of the
order of 8 times is displayed when compared with an op-
timal irregular lattice. The order of time saving would be
even greater if compared to the widely used regular lat-
tices. : ‘

To demonstrate how the calculated resonant frequency
may be made constant, over a wide variation in ¢, through
the use of correction factors, the 5 mm open-end was again
modeled this time only using correction in the strip plane.
Fig. 9 displays the fundamental resonance obtained. The
rise in calculated resonant frequency with « in the uncor-
rected runs is due to the fact that the effective width of
the line as seen by the model becomes less. The relatively

level curve for the calculated frequency response of the
corrected runs indicates that the o dependencey of model

prediction may be removed by correction factors which
enables a more flexible approach to the positioning of the
model lattice. This gives benefits both in number of model
nodes and in the model time step, as indicated by Fig. 3.

VIII. RESULTS FOR OPEN STRUCTURES

In order to demonstrate the use of correction factors on
open structures using pulse excitation analysis, the low
pass filter that was analyzed by Sheen et al. [20] using
FDTD analysis and a regular lattice, was again analyzed
by the FDTD method. The model geometry is given in
Fig. 10. We aim to show how the speed of Sheen’s anal-

- ysis can be substantially improved through the use of an

irregular lattice, and then further improved through the
use of correction factors. Apart from the ground plane,
the walls of the model had a form of Mur’s [21] first order
absorbing boundaries imposed on them, which have been
adapted to allow for a nonuniform lattice [22]. A
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TABLE 1
MODEL CONFIGURATIONS USED IN THE SIMULATION OF THE MICROSTRIP OPEN-END DiSCONTINUITY,
LENGTH = 5 mm

FDTD Model Type: Coarse Grid Coarse Grid with CF Fine Grid
-(Open-End Length = 5Smm) = ——  ee—ee—o- — emeeeeeeee-
Nodes 20 x 12 x 20 20 x 12 x 20 40 x 24 x 20
Time Step (pS) 0.528 0.528 0.264
NRT? ' 1.00 1.01 26.67

(1.00 = 58.3 CPU min)

*Run times given for a Gould NP1 mini-computer.

TABLE II
MobEL CONFIGURATIONS USED IN THE SIMULATION OF THE MICROSTRIP OPEN-END DISCONTINUITY,
LENGTH = 8§ mm

FDTD Model Type: Coarse Grid

(Open-End Length = 8 mm)

Coarse Grid with CF

Highly Irregular Fine Grid

Nodes 20 x 12 X 20
Time Step (pS) 0.729
NRT? 1.00

(1.00 = 53.6 CPU min)

20 x 12 x 20 24 x 20 x 24
0.729 0.364
1.01 8.01

*Run times given for a Gould NP1 mini-computer.

Fundamental Resonant Frequency (GHz)
5.4

[ Coarse Grid No CF
20x12x20 Nodes

5.35

Coarse Grid with CF
20

53 x12x20 Nodes

5.25

52F

515 -

5.1
] 0.1 0.2 0.3 0.4

albha (o)
Fig. 9. Open-end discontinuity modeling with varying «.

Fig. 10. Low-pass filter geometry showing lattice regions for model B.

Gaussian pulse was used as the excitation because it is
smooth and has a Fourier Transform that is also Gaussian.
As in the Sheen FDTD model, the time constant of the
pulse was 15 pS with an overall duration of 90 pS. To
ensure a pulse launch undistorted by the model boundary,
the vertical components of the E fields were excited under
the feed-line two nodes inside the absorbing boundary.
This set up two pusles travelling in opposite directions.
The receding one was absorbed by the absorbing bound-
ary. A time history was taken at a node just below the
feedline whose position was chosen so as to allow for sep-
aration of the input and reflected waves. A time history
was also taken just under the output line. The vertical E
field components in the time histories can be assumed pro-

portional to the voltage on the lines, as long as the line
widths are the same, ‘and can be directly fourier trans-
formed to produce frequency dependent S-parameters.

Table 1T displays the configurations of FDTD models
used. We use Sheen’s measured results obtained from a
HP-8510 network analyser, and a Touchstone® simulation
for further comparison. Fig. 11 displays the wide-band
S-parameter results for the measured case, the Touchstone
simulation and the best irregular lattice FDTD simulation
model found, (B). The model (B) was the best. found in
terms of overall speed and accuracy, and is similar to the
one used in [23]. The results are generally in agreement
in showing the characteristic troughs, but diverge from
the measured for the higher frequencies. An FDTD model
will become less accurate as the frequency rises because
the mesh size becomes a larger fraction of wavelength,
and the higher frequency components in the initial Gauss-
ian pulse are relatively less. Touchstone results are based
on combinations of empirical formulas and quasi-static
models which will be expected to reduce in accuracy with
increasing frequency. It must also be noted that the HP-
8510 network analyzer was only calibrated to 18 GHz,
furthermore, measured results in these regions become in-
creasingly sensitive to connector imperfections, substrate
permittivity tolerances and metal etching tolerances.
However, with these points in mind, it is reasonable to
compare results for all methods and models by looking
more closely at the S-parameter troughs.

Fig. 12 displays S21 results over 5.5 to 9 GHz for our
FDTD models (B, C, D), Sheen’s FDTD model (A),
Sheen’s measured data and the Touchstone simulation.
The Touchstone simulation is quite poor here, only pick-
ing out a central trough. Sheen’s regular lattice model (A),

®A registered trademark of EEsof, Inc.
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. TABLE III
MODEL CONFIGURATIONS USED IN THE SIMULATION OF THE Low PAss FILTER

NRT?

FDTD Model Type: ) Time Step (1.00 = 48.5 CPU
(Low Pass Filter) Nodes ®S) min)
A Sheen [20] Regular Lattice 128 000 0.696* 8.01
B Best Irregular Lattice 25 344 0.508 2.18
C Coarse Irregular Lattice 12096 . 0.527 1.00
D Coarse Irregular Lattice with CF 12 096 - 0.527 1.01

3Run times given for a Gould NP1 mini-computer.

*Using the same stability criterion as for models B, C and D.
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Fig. 11. Wide-band low-pass filter results. (a) | S,,|. (b) | S|

o MaG 821 (dB)

, : !
+ Touchstone ,l
i

70 : : - . -
55 6 6.5 7 75 8 8.5 9
Frequency (GHz)
Sheen Measured Sheen FDTD (A) FDTD (B) FDTD (C) FDTD with CF (D} Touchstone
NRT=8.01 NAT=2.18 NI NRT=1.01

Fig. 12. Narrowband comparison of low-pass filter 21 results.

although taking about 3.7 times longer to run than the best
irregular lattice model (B), is the further removed from

“the measured data. This is due to having a larger cell size -

around the discontinuities, and hence, the worse model
definition. FDTD model C uses less nodes in a coarser
lattice than model B, which allows a larger time step,
(0.527 pS as opposed to 0.508 pS), and a run-time of less
than half that of model B. The main trough is about 400
MHz down on the measured and model B. FDTD model
D uses the same lattice as model C but uses correction

MAG S11 (dB) MAG S11 (dB)
0

/Bl
Measured "D\
Touchstone 50

-4 : g L -
44 46 48 5 52 54 14 145 15 15.5 6.5
Frequency (GHz) Frequency (GHz)

" $heen Measured Sheen FDTD (A) FDTD () FOTD {C} FOTD with CF (D) Touchstone
' NAT=801  NAT=218 NAT=1.00  NAT=101

Fig. 13. Narrowband comparison of low-pass filter S11 results.

factors in the strip plane and just below it. The trough has
been substantially shifted upwards by the use of correc-
tion factors and is now nearer to the measured than
Sheen’s model (A) which took approximately eight times
longer to run.

Fig. 13 displays S11 results for the first and last troughs;
over 4.4 to 5.5 GHz and over 14 to 16.5 GHz, respec-
tively. The same conclusions as for the S21 results gen-
erally apply. The frequency shifts on the coarser models
through the use of correction factors may be seen on both
graphs, ‘indicating that correction factor performance is
frequency robust. For reasons explained above, it is im- -
portant not to give too much credence to the higher fre-
quency range results due to the uncertainty over the meas-
ured data.

IX. CoNCLUSION

The incorporation of correction factors into the FDTD
algorithm - applied to the field components close to mi-
crostrip discontinuities has been shown to give a marked
improvement in model accuracy for both resonator and
pulse analysis. This equates to considerable savings in
computer processing time, because required accuracy can
be achieved using a coarser lattice which means less nodes
and a larger time step in the model. Correction factors
have also been shown to produce a level frequency re-
sponse over a wide range of « variation. This enables
much greater freedom in the placement of the model lat-
tice which again allows fewer nodes and a larger model
time step. With the use of irregular lattices, the order of
time saving indicates that FDTD analysis of complex
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MMIC circuitry is now feasible on moderate power com-
puters.

The technique should be especially effective wherever
brute force lattices have to be used to give adequate def-
inition to finely detailed structures, thin lines or gaps. In
MMIC’s, curved structures are in fact composed of short
line segments, (e.g. a circle being typically 32 sided). The
new technique allows for correction of corners of arbi-
trary angle so that the effects of curves and beveled cor-
ners can be predicted without staircasing approximation
errors.
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